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Abstract

When standard optimization methods fail to find a satisfactory solution for a parameter fitting

problem, a tempting recourse is to adjust parameters manually. While tedious, this approach

can be surprisingly powerful in terms of achieving optimal or near-optimal solutions. This

paper outlines an optimization algorithm, Adaptive Stochastic Descent (ASD), that has been

designed to replicate the essential aspects of manual parameter fitting in an automated

way. Specifically, ASD uses simple principles to form probabilistic assumptions about (a)

which parameters have the greatest effect on the objective function, and (b) optimal step

sizes for each parameter. We show that for a certain class of optimization problems

(namely, those with a moderate to large number of scalar parameter dimensions, especially

if some dimensions are more important than others), ASD is capable of minimizing the

objective function with far fewer function evaluations than classic optimization methods,

such as the Nelder-Mead nonlinear simplex, Levenberg-Marquardt gradient descent, simu-

lated annealing, and genetic algorithms. As a case study, we show that ASD outperforms

standard algorithms when used to determine how resources should be allocated in order to

minimize new HIV infections in Swaziland.

Introduction

Consider a human H who is attempting to minimize a nonlinear objective function, E = f(x),

by manually adjusting parameters in the vector x. H typically begins with a uniform prior

regarding which parameters to vary, and chooses step sizes that are a fixed fraction (e.g., 10%)

of the initial parameter values. H will then pseudorandomly choose one or more parameters to

adjust. Every time a parameter xi is found to reduce E, the probability that H will select xi in

the future increases; conversely, if changes in xi are not found to improve E, the probability

that H will select xi decreases (formally, H forms “hunches” about which parameters are

“good”). H also adaptively adjusts the step size based on the information H obtains about

the curvature of parameter space with respect to each dimension (e.g., if ΔE/Δxi� const. over

multiple iterations, H will increase the step size). Despite its drawbacks, the adaptive nature of

manual parameter fitting makes it a remarkably powerful method.
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Thus, despite the smörgåsbord of available automated optimization algorithms, manual fit-

ting of parameters remains a familiar bane of researchers (e.g., [1, 2]), especially in cases where

evaluations of the objective function are computationally intensive, such as climate models [3],

neuronal network models [4–6], or detailed epidemiological models [7]. However, it is difficult

to estimate how commonly manual parameter fitting is performed, since authors often do not

explicitly mention its use (e.g., [8]).

In many types of optimization problems, it is more important to need only a small number

of function evaluations to find a reasonable local minimum than it is to find the global mini-

mum [9, 10]. Indeed, the latter may be ill-defined given the large uncertainties that are often

present when models of complex systems are fitted to empirical data, as in the citations listed

above.

With the increasing availability of high-performance computers and clusters [11], easily

parallelizable optimization methods such as evolutionary algorithms (where different individ-

uals can be run on different cores) and Monte Carlo methods (where different initializations

can be run on different cores) have a notable advantage for certain types of problems. The

common theme in these algorithms is the ability to use a different random seed for each paral-

lel instance. However, as the size of parameter space increases, the advantage of this approach

is diluted: whereas a 3- or even 5-dimensional parameter space may be reasonably densely

sampled by a Monte Carlo initialization, a 20- or 100-dimensional space cannot. This is

because parameter space grows exponentially with an increasing number of dimensions,

whereas parallelization increases sampling rates linearly.

In high-dimensional parameter spaces, it is unlikely that all parameters contribute

equally to the objective function. Identifying those that contribute more, thereby allowing

computational resources to be focused on them, has the potential to significantly reduce the

total number of function evaluations required. Despite humans’ limited capacity to imple-

ment Bayesian-optimal strategies [12, 13], we speculate that this adaptive approach to both

parameter selection and step size is the key reason why manual parameter fitting can be

highly effective.

The aim of this paper is to present a random search algorithm, Adaptive Stochastic

Descent (ASD), that was inspired by manual parameter fitting and is intended to be a simpler

alternative to more complex optimization methods. ASD is most applicable to optimization

problems with more than approximately 5 dimensions—i.e., large enough so that performing

function evaluations across all dimensions is inefficient. ASD forms the core of the optimiza-

tion algorithm used in the Optima suite of tools (optimamodel.com), most notably Optima

HIV [14], and as such has already been extensively used and validated for calibrating epi-

demic models and determining optimal resource allocations [15–22]. The algorithm has also

been applied to fitting a spiking neuronal network model to electrophysiology data from

individual rat brains [23], and has been used in ongoing work calibrating a neural field

model to reproduces impulse responses in sleep EEG data [24]. Here we also compare ASD

to traditional algorithms using two classic optimization test problems, and provide an

extended case study on optimally allocating resources for HIV interventions using a detailed

model of Swaziland’s HIV epidemic.

ASD is provided under the open-source MIT License. Python and MATLAB versions are

available for download from thekerrlab.com/asd or via GitHub at github.com/thekerrlab/asd.

Basic algorithm

Consider an objective function E = f(x), where E is the scalar error (or other quantity) to be

minimized (or maximized) and x = [x1, x2, . . ., xn] is an n-element vector of parameters. There
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are 2n possible directions j to step in: an increase or decrease in the value of each parameter.

Associated with each parameter xi are (a) two initial step sizes: sj ¼ sþi or s�i , which define the

step size in the directions of increasing or decreasing xi, respectively (i.e., sþi > 0 and s�i < 0);

and (b) two initial probabilities: pj ¼ pþi or p�i , which define the likelihood of selecting direc-

tion j (for a uniform prior, pj = 1/2n—satisfying the requirement that
P

p ¼
P2n

j¼1
pj ¼ 1).

Thus, the vectors s and p have length 2n.

At each step k, the algorithm maps a random variable α 2 (0, 1) onto p, thereby choosing a

direction j 2 (1. . .2n) and a corresponding parameter i = dj/2e 2 (1. . .n), where d�e denotes

the ceiling operator. The algorithm then evaluates

E�k ¼ f ðx þ dðiÞÞ; ð1Þ

where δ(i) is an n-element vector such that δi = sj and 0 otherwise. Then:

1. If E�k < Ek� 1:

a. The new parameter value is adopted: xi! xi + sj;

b. The error is updated: Ek ! E�k ;

c. sj is increased: sj! sj � sinc (where sinc > 1);

d. pj is increased: pj! pj � pinc (where pinc > 1), and p is renormalized such that ∑p = 1.

2. Otherwise:

a. The parameter vector x and error E are not changed;

b. sj is decreased: sj! sj/sdec (where sdec > 1);

c. pj is decreased: pj! pj/pdec (where pdec > 1), and p is renormalized as above.

The algorithm thus has four metaparameters: sinc, sdec, pinc, and pdec. In general, the

smoother and more linear the objective function is, the larger the learning rates should be; the

choice of sinc = sdec = pinc = pdec = 2 has been found to work well for both simple test cases as

well as optimizing complex epidemiological models, although values from approximately 1.2

to 3 were found to have broadly similar performance. In addition to these metaparameters,

three initial value vectors need to be specified: the initial parameter vector x0, step sizes s

(which in general can be initialized as a fixed fraction of the corresponding initial parameter

value, e.g. 20%, unless the initial value is zero), and probabilities p (where typically pj = 1/2n
suffices for an n-parameter problem).

By modifying s and p after each iteration, the algorithm learns which directions are most

effective to step in and by how much (in the sense that it updates its choices of s and p by their

initial states depending on accumulated evidence). This, combined with the stochastic choice

of which parameters to modify on each iteration, resembles the way in which humans (imper-

fectly) perform Bayesian decision-making in situations such as N-armed bandit problems [13].

The criteria for terminating the algorithm can be specified in the same way as for traditional

optimization algorithms. The most common choices for termination are when changes in

parameter values (i.e., Δx) and/or improvements in the objective function (i.e., ΔE) are below a

given absolute or relative threshold (e.g., 10−6) for a given number of iterations (e.g., 50).

Extensions to the algorithm

This section describes several modifications to the basic algorithm that may make it more suit-

able for a broader range of optimization problems.

Optimization by Adaptive Stochastic Descent
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To circumvent the problem of local minima, the method may be used with Monte Carlo

initialization [25]. In this case, the ASD algorithm is repeated multiple times (typically,

101 − 103) with pseudorandom choices of x0. The use of multiple starting points helps achieve

the balance between “exploration and exploitation” (exploring the entire feasible region of

parameter space versus exploring the most promising subregions), which is critical for efficient

global search [26]. This is the approach used in Optima HIV, where typically up to 10 Monte

Carlo initializations are used. When we applied ASD to each of the 54 different Optima HIV

models that correspond to the countries comprising 80% of the global burden of HIV [27], we

found that a single initialization converged on the global optimum for 38 (70%) of the models,

while 10 initializations converged on the global optimum for all but one model (98%).

Another approach for circumventing the problem of local minima is a probabilistic step

acceptance process, similar to that used in simulated annealing or the Metropolis-Hastings

algorithm [28]. Here, instead of always performing step 2 of the algorithm if the new iteration

does not reduce error, step 1 is performed with nonzero acceptance ratio ρ, where ρ is

a function of the change in error; e.g., r / Ek� 1=E�k . Although the parameter set resulting from

each iteration can be kept, as in a Metropolis-Hastings algorithm, the value of doing so is lim-

ited since the asymptotic distribution of parameter sets is not guaranteed to reach a stationary

distribution, due to the adaptive method for choosing which parameters to vary. Instead, it

would suffice to keep two parameter sets, the current one and the best one. As a simpler alter-

native to implementing a Metropolis-Hastings approach, rather than always reducing the step

size if the new iteration does not reduce the error, the step size could have a nonzero probabil-

ity of increasing, potentially allowing the algorithm to escape local minima.

Note that in the limit of infinite iterations, the basic ASD algorithm will not almost surely

converge to the global optimum, since the step size will asymptotically converge to zero if

the algorithm is in a location of parameter space such that its step size in all dimensions is

smaller than the size of the local minimum’s basin of attraction. However, the algorithm will

almost surely converge to the global optimum if probabilistic step acceptance is implemented

(or if step sizes have nonzero probability of increasing when an evaluation does not result in

improvement). Formally, multiple initializations do not suffice to almost surely converge

unless they are infinite in number. However, in practice, depending on the smoothness and

monotonicity of the objective function, multiple initializations typically allow the explora-

tion of global parameter space (and thus convergence) more efficiently than probabilistic

step acceptance.

In some cases it may be desirable to allow assumptions about the scale or relative impor-

tance of parameters to be incorporated, in which case the assumptions of uniform priors p and

uniform initial step sizes s can easily be relaxed. However, due to the adaptive nature of the

algorithm, even silly initial choices of p and s will be corrected, as long as all pj and sj are non-

zero. In general, choices of sj or pj that are too small are more problematic than ones that too

large, since the latter will be corrected with each iteration that fails to improve the objective

function.

To incorporate additional information about the change in the objective function, rather

than updating the probability pj by a fixed amount after each successful iteration, the change in

pj (Δpj) can be a function of the change in the objective function E (ΔE), such that a larger ΔE
results in a larger Δpj, as in simultaneous perturbation stochastic approximation [29]. How-

ever, since the expected change in E at step k is proportional to both |Ek − min(E)| and the

ratio of the step size to the characteristic scale of each parameter, and since in general neither

of these quantities are known, the constant of proportionality between Δpj and ΔE cannot

typically be estimated a priori. One can partially circumvent this problem by comparing the
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current ΔE to its previous values; however, more weight would need to be given to more recent

values, since ΔE tends to decrease as the algorithm converges on a solution.

The assumption of local linearity can be relaxed by varying multiple parameters on a single

iteration. However, assuming a separate probability is stored for each parameter combination,

this reduces the learning rate; for an n-parameter problem, modifying a single parameter at

each iteration results in a learning rate of 1/2n on average for each parameter; in the limit

where all possible combinations of parameters are considered, the learning rate would be

1/22n. While manageable for small numbers of parameters (e.g.,�4), this quickly becomes

intractable as the number of parameters grows. Conversely, if multiple parameters are modi-

fied simultaneously, the probabilities of all modified parameters could be updated simulta-

neously; this approach is likely to be most effective in very high-dimensional systems where

the function E is nearly flat with respect to many of the dimensions, in which case varying

parameters one by one may be time-consuming. The superior performance of simulated

annealing compared to ASD for small numbers of function evaluations in the 10-parameter

Rosenbrock’s valley problem discussed below is likely due to this effect.

Finally, although only loosely inspired by Bayesian principles, the ASD algorithm could

potentially be adapted to implement them more rigorously. While a more formal Bayesian

approach may be desirable in certain situations, in general it is difficult to determine whether

new information should be used to update the existing distribution, or whether the system

is in a sufficiently dissimilar part of the parameter space that information from much earlier

iterations is no longer relevant. Nonetheless, for certain problems, additional capacity for

adaptation may be beneficial. For example, as shown below, the basic implementation of ASD

described above performs poorly in cases where the objective function is dominated by nonlin-

ear parameter interactions, as in the classic version of Rosenbrock’s valley; for this particular

problem, an algorithm that was capable of learning nonlinear parameter combinations would

be far more efficient.

Comparison to other optimization methods

Here we compare ASD to four standard optimization methods: the Nelder-Mead nonlinear

simplex algorithm [30], Levenberg-Marquardt gradient descent [31], simulated annealing

[32], and a genetic algorithm [33]. All methods were implemented in MATLAB 2012b (The

MathWorks, Nantick, MA), via the Optimization Toolbox functions “fminsearch”, “lsqnon-

lin”, “simulannealbnd”, and “ga”, respectively. These algorithms are also available in the “opti-

mize” module of the Python package SciPy via “minimize(method = ’Nelder-Mead’)”, “leastsq

()”, and “anneal()”, respectively (genetic algorithms are not available in SciPy, but are available

via other modules). We chose these methods to compare against since, like ASD, they have rel-

atively simple implementations and relatively few metaparameters that need to be specified.

For ASD, we used metaparameters sinc = pinc = sdec = pdec = 2, initial step sizes sj of 20% of

the parameter values in x0 (which are given below; the step size for any parameter with an ini-

tial value of 0 is the mean of the other step sizes), and uniform initial probabilities pj (i.e., 1/2n
for an n-dimensional problem). MATLAB’s default metaparameters were used for the other

four algorithms, except that the initial temperature of the simulated annealing algorithm was

set to be equal to 10 � h|x0|i following manual exploration of metaparameter space, since the

default choice of 100 did not generalize well across problems of different scales. Indeed, one of

the major disadvantages of this type of algorithm is its sensitivity to the values of its metapara-

meters [34].

To test this suite of algorithms, we used original and modified versions of the two classic

optimization problems used for illustrating the simplex algorithm [30]:

Optimization by Adaptive Stochastic Descent
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1. Rosenbrock’s parabolic valley (two-dimensional):

E ¼ 100ðx2 � x2
1
Þ

2
þ ð1 � x1Þ

2
; ð2Þ

with the starting point at x = (−1.2, 1). The optimum is at x = (1, 1).

2. A modified 10-dimensional version of Rosenbrock’s valley, with the functional form as

given in Eq 2, but with a 10-element parameter vector x; the remaining 8 parameters do not

contribute to the objective function. The starting point is at x = (1.5, −1.5, 0, 0 . . . 0). The

optimum is at x = (1, 1, ω1 . . . ω8), where ω1 . . . ω8 can be any real numbers.

3. A 4-dimensional Powell’s quartic function, modified to be N-dimensional:

E ¼
P
ððxa þ 10xbÞ

2
þ 5ðxc � xdÞ

2
þ ðxb � 2xcÞ

4
þ 10ðxa � xdÞ

4
Þ; ð3Þ

where xq is a vector of length N/4 (and note that vector operations are performed point-

wise). The starting point is at xa ¼ ð3Þ, xb ¼ ð� 1Þ, xc ¼ ð0Þ, and xd ¼ ð1Þ, where each

component is repeated N/4 times. The optimum is at x = (xa, xb, xc, xd) = (0, 0, 0, . . . 0). For

example, if N = 4 (as in the original), then x0 = (3, −1, 0, 1) and xopt = (0, 0, 0, 0); if N = 8,

then x0 = (3, 3, −1, −1, 0, 0, 1, 1) and xopt = (0, 0, 0, 0, 0, 0, 0, 0). Here, we used 4, 12, 20, and

100-dimensional versions of Powell’s function.

The results from applying each of these algorithms to each of the three test problems is

shown in Fig 1. For the stochastic algorithms (ASD, simulated annealing, and genetic algo-

rithms), the interval shown represents the interquartile range for 40 different random seeds.

For most test problems and iterations, these interquartile ranges did not overlap, suggesting

that the intrinsic differences between the algorithms are more important than their stochastic

components.

As shown in Fig 1, for the two-dimensional optimization problem, the nonlinear simplex

method is most efficient, with all other algorithms requiring considerably more function eval-

uations to obtain the same error. Notably, after the initial descent, ASD was especially ineffi-
cient, since its assumption of local linearity is violated by the shallow, curved valley (if this

assumption were relaxed, as described above, then ASD’s performance on this problem would

be significantly improved). With the modified 10-dimensional version of Rosenbrock’s valley,

ASD is the most efficient algorithm over most of the first several hundred function evaluations,

as shown in Fig 2 for a single random seed. For small numbers of iterations (<30), for this par-

ticular seed, simulated annealing was by far the most efficient algorithm, reducing the error by

a remarkable 98% after just 4 function evaluations. However, this algorithm became mired

near the point (1.5, 2.4), far from the minimum of (1, 1), and did not significantly reduce the

error beyond the first 20 function evaluations. After 50 function evaluations, ASD had reduced

the error by a median of 99.9%, compared to 99.7% for simulated annealing, 96% for the

Levenberg-Marquardt method, 82% for the nonlinear simplex method, and 0% for the genetic

algorithm. Similarly, ASD reduced the error by 99.99% after 70 function evaluations; in com-

parison, the next best algorithm (the simplex method) required 220 function evaluations to

reach the same error level.

During the descent into the shallow curved valley (comprising *99.9% of the total error),

the most efficient algorithms were ASD and simulated annealing; within the valley (the

remaining *0.1% of the total error), the simplex algorithm was by far the most efficient.

Hence, these examples illustrate that in optimization problems where some parameters are sig-

nificantly more important than others, ASD has significant advantages. In contrast, for prob-

lems in which all parameters have equal importance, as in the original Rosenbrock’s valley

problem, other algorithms have superior performance.

Optimization by Adaptive Stochastic Descent
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For the 4-dimensional Powell’s quartic function, the nonlinear simplex method was again

the most efficient, followed by ASD. For the 12- and 20-dimensional version, ASD was most

efficient for 60–1700 and 250–4400 function evaluations respectively (corresponding to

roughly 99.9999% of the total error at the upper limit in each case), after which the simplex

method was most efficient. For the 100-dimensional version, the Levenberg-Marquardt

method was most efficient for the first 1000 function evaluations (corresponding to 97% of the

total error), but ASD was the most efficient algorithm for larger numbers of function evalua-

tions. In practice, algorithms are not run for a fixed number of function evaluations, but rather

Fig 1. Performance of ASD compared to standard nonlinear optimization algorithms. The four algorithms used are Nelder-Mead nonlinear

simplex, Levenberg-Marquardt gradient descent, simulated annealing, and genetic algorithms. The x-axis shows the number of individual function

evaluations, while the y-axis shows the error relative to the starting point. Standard methods—especially the simplex method—are most efficient for

low-dimensional problems (e.g., Rosenbrock’s valley), in many cases ASD is the most efficient algorithm for high-dimensional parameter spaces (e.g.,
the 100-dimensional version of Powell’s quartic function). For the stochastic methods (ASD, simulated annealing, and the genetic algorithm), the

shaded regions show the interquartile range for 40 different random seeds.

https://doi.org/10.1371/journal.pone.0192944.g001
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until they satisfy a given stopping criterion, which is usually defined in terms of the change in

the relative or absolute error. Specific choices for these criteria depend on the problem at

hand, but for illustrative absolute error tolerances of 99.9% or 99.99%, ASD was the most or

equal-most efficient for all cases except the 2D version of Rosenbrock’s valley.

The five optimization methods discussed here employ very different parameter update

strategies, as shown strikingly in Fig 3. The approach used in ASD is most similar to the

Levenberg-Marquardt method, with the exception that the rate of convergence of the former

increases over time (due to its adaptive step size), whereas for the latter, and for other algo-

rithms, it decreases (as expected from Donsker’s theorem [35]). In the example shown here

Fig 2. Optimization of the 10-dimensional version of Rosenbrock’s valley. (A) Trajectories of each optimization method starting up

to 300 function evaluations from the starting point (1.5, −1.5); each iteration is shown with a square, but note that multiple function

evaluations may occur at each iteration. Color shows error relative to starting point. Note the locally linear steps of ASD that rapidly

adapt in size. (B) Relative error of each method for the first 100 function evaluations, showing the initial stage of the algorithms. (C)

Relative error for the first 300 function evaluations, showing the asymptotic stage of the algorithms.

https://doi.org/10.1371/journal.pone.0192944.g002
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(a 20-dimensional Powell’s quartic function), the Levenberg-Marquardt method has the lowest

error for 250 or fewer iterations; for large numbers of iterations, ASD has by far the lowest

error—indeed, for 2000 or more iterations, it has nearly 2 orders of magnitude less error

than the Levenberg-Marquardt method, and 4 orders of magnitude less error than nonlinear

Fig 3. Demonstration of parameter update strategies for each algorithm applied to a 20-dimensional Powell’s quartic function. Each plot has 20

lines, showing the value of each parameter after each function evaluation. The optimum is at (0, 0, 0, . . . 0), corresponding to all 20 lines converging to

0. The error relative to the starting point for each method is shown in the bottom right panel. For small numbers of iterations (the adaptive phase of

ASD), the Levenberg-Marquardt method reduces error most quickly; for larger numbers of iterations, ASD achieves 1–4 orders of magnitude smaller

error for a given number of iterations than the other methods. (Note: since the genetic algorithm does not use a single initial point, individuals were

instead initialized using a uniform random distribution in the range [−1, 3]. The Levenberg-Marquardt algorithm operates on the 20-dimension

Powell’s function identically to the 4-dimensional version, with the exception that each iteration requires 5 times as many function evaluations.)

https://doi.org/10.1371/journal.pone.0192944.g003
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simplex, simulated annealing, and genetic algorithms. The superior performance of ASD com-

pared to the other methods is surprising since, unlike in Fig 2, in this problem all parameters

are of roughly equal importance, so the adaptive probability p is unlikely to significantly con-

tribute to the efficiency of the optimization. Thus, even in cases where ASD’s only advantage is

its adaptive step size, it is still capable of outperforming traditional algorithms.

Optimizing HIV resource allocations

In contrast to the foregoing theoretical discussion of error minimization for analytical func-

tions, here we describe the practical application that ASD was designed for: finding the allo-

cation of resources across different HIV prevention and treatment programs that minimizes

new infections [36]. To do this, we used the Optima HIV model (formerly known as Prevtool

[15]) to perform the analyses. An overview of this version of the model is presented in S1

Appendix, with further details provided in [14]. Subsequent modifications to the model

have been described in [37], and the most recent version of the software can be accessed via

hiv.optimamodel.com.

In brief, the model describes HIV transmission and progression in a number of interacting

subpopulations (14 in this case), including female sex workers, men who have sex with men,

and general males and females in different age groups. The model incorporates parameters

describing the sexual behavior, injecting behavior, HIV testing and treatment rates, and sexual

and injecting partnerships of each population, as well as basic clinical parameters such as HIV

transmissibility and disease progression rates. The model was based on to behavioral and sur-

veillance data provided by the Swaziland Ministry of Health and UNAIDS. Further details are

provided in [38]. In addition to empirical estimates of the model parameters, the model was

calibrated to match surveillance data on HIV prevalence, diagnoses, and numbers of people on

treatment. (Although ASD was also used for this calibration, here we instead focus on its use

for the budget optimization procedure, since it better illustrates the differences between the

methods.)

To optimize the allocation of Swaziland’s HIV budget, we assumed that spending on partic-

ular HIV programs produces changes in corresponding behavioral parameters or testing and

treatment rates (for example, programs targeting female sex workers increase their probability

of condom use). The objective being minimized was the number of new infections over the

period 2015–2020, subject to the constraint that total funding was held constant for the last

year in which full budget details were available (2014). The vector x being optimized consisted

of the budget allocations across 9 different HIV prevention, testing, and treatment programs.

Thus, the optimization problem had a dimensionality of 9 (since the constraint of constant

total budget, which would otherwise reduce the dimensionality to 8, is applied post hoc).

The initial budgets for different programs varied by over three orders of magnitude: from

US$40,000 per year for prevention programs for men who have sex with men to US$45 million

per year for antiretroviral treatment. To evaluate the objective function, the budget for each

program was first converted to one or more model parameter values via a nonlinear cost-out-

come function, which in turn were used in the nonlinear dynamical epidemic model. The

cost-outcome functions and epidemic model are described in detail in S1 Appendix. Since the

model is relatively computationally intensive, requiring approximately 1–2 s per function eval-

uation on a standard laptop, large numbers (>103) of evaluations become wearisome.

This particular optimization problem has three notable aspects. First, despite the complex-

ity and nonlinearity of the model, in almost all cases the objective function decreases mono-

tonically as funding to any of the programs is increased—the only exception being HIV

testing and counseling programs, in which case diagnosing more people with early-stage HIV
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infections without simultaneously increasing funding for antiretroviral treatment prevents

some people with late-stage HIV infections from accessing treatment. Second, the country’s

current HIV budget allocation, which is used as the initialization for the algorithm, is the prod-

uct of considerable deliberation among numerous stakeholders and experts who have typically

had the goal of allocating funds optimally. Thus, in most cases funds are already reasonably

well allocated, and hence the initial starting point is expected to lie relatively close to the

global optimum. Third, in situations where this is not the case, optimal solutions in very dis-

tant parts of parameter space are unlikely to be feasible given political and logistical con-

straints. Each of these three factors reduce the probability and/or importance of there being a

difference between locally and globally optimal solutions.

As shown in Fig 4A, under current conditions, the model predicts approximately 2500

new infections per year in Swaziland. However, if funding is optimally allocated, as shown in

Fig 4B (which consists largely of shifting funds from programs for orphans and vulnerable

children towards treatment and male circumcision programs), this can be reduced to

approximately 1260 new infections per year. ASD found this allocation after 65 function

evaluations, while the next-best algorithm, the Levenberg-Marquardt method, found a nearly

identical allocation after 830 function evaluations. None of the other methods reached this

level of optimization within 2000 function evaluations; by that point, the genetic algorithm

had achieved 99.3% of the reduction in new infections found by ASD and the Levenberg-

Marquardt method, the nonlinear simplex algorithm 95%, and the simulated annealing algo-

rithm 90%.

Discussion and summary

This paper presents a simple optimization method inspired by the process of manual parame-

ter fitting that is capable of outperforming traditional algorithms for certain classes of prob-

lems. The algorithm is most effective for problems with moderate to large dimensionality (�5

dimensions), which corresponds to the case in which there are enough parameters that differ-

ent parameters are likely to have substantially different overall contributions to the objective

function. Indeed, the relative uniformity of parameters in the simple test functions used

here (in terms of both scale and effectiveness) does not necessarily reflect certain real-

world situations in which some—or even most—of the objective function’s parameters may

have little influence on its value. In such situations, as with the real-world example of HIV

budget allocations, ASD is especially effective, as it is able to adapt to those parameters (and

those scales) that produce the greatest improvements in the objective function. An example of

this is provided in Fig 4, where ASD finds what appears to be the globally optimal solution

more than 10 times faster than any other algorithm. In contrast, ASD is less effective for opti-

mization problems where the objective function has large discontinuties or numerous local

minima; for such problems, evolutionary algorithms typically provide superior performance

[39].

Within the taxonomy of optimization methods, ASD is a stochastic, derivative-free, direct

search method (for an excellent review of random search methods for simulation optimization,

see [40]). Thus, ASD is similar to adaptive random search algorithms [41–46]. However, these

algorithms are adaptive only in terms of step size, not step probability, since typically they step

in all dimensions simultaneously (e.g., by sampling points from a hypersphere of radius equal

to the current step size), and are thus unable to obtain information about individual dimen-

sions. In addition, they typically require additional function evaluations to calculate the opti-

mal step size, whereas ASD updates step size automatically on each iteration. ASD also has

some similarities with tabu search [47], which updates step probability (by forming “taboos”
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about stepping in certain directions) but not step size. Thus, ASD is loosely analogous to a

combination of the adaptive random search and tabu algorithms.

This study has two main limitations. First, we chose the four algorithms to compare against

ASD based on their popularity, as evidenced by their inclusion in MATLAB’s Optimization

Fig 4. Comparison of optimization methods for a real-world example of HIV resource allocation. (A) Performance of each algorithm for the

objective function (y-axis) of minimizing the number of new infections. As above, the shaded regions show the interquartile ranges over 40 different

random seeds. (B) Original (left) and optimal (right) budgets. MSM = programs for men who have sex with men; Circumcision = voluntary medical

male circumcision; FSW = programs for female sex workers; Comdom = condom promotion programs; Behavior change = social and behavior change

communication; Testing = HIV testing and counseling services; PMTCT = prevention of mother-to-child transmission; OVC = programs for orphans

and vulnerable children; ART = antiretroviral treatment.

https://doi.org/10.1371/journal.pone.0192944.g004
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Toolbox and Python’s SciPy module. However, as noted above, many other optimization algo-

rithms exist, some of which significantly outperform these more traditional methods for par-

ticular problems—especially those that are non-convex, multi-modal, and/or have many local

minima—as shown in the comprehensive review by Rios and Sahinidis [48]. Since ASD was

intended as a relatively simple and general-purpose alternative to other traditional optimiza-

tion algorithms, these more advanced algorithms and the complex (and often relatively

specific) problems they have been designed to solve have not been considered in depth. The

second limitation of this study is that MATLAB’s default values of the metaparameters were

used for the simulated annealing and genetic algorithms (except the initial temperature of

the simulated annealing, as noted above). Metaparameter tuning would likely increase the

performance of these algorithms more than it would for ASD, since these algorithms are not

adaptive—but conversely, an advantage of ASD is that it typically does not require any meta-

parameter tuning, so in that sense the comparison is fair. In this sense, ASD is highly unusual

among random search methods in that it can be used “out of the box” with consistent perfor-

mance across across a wide range of optimization problems for a default set of metapara-

meters; in contrast, metaparameter tuning is an essential step of using other methods [49].

As noted above, ASD has already been used successfully in the real-world applications

of optimizing the allocation of HIV budgets, as well as calibrating various models—of HIV epi-

demiology, spiking neuronal network activity, and neural field dynamics—to experimental

data. In the HIV budget optimization example shown above, standard optimization methods

(including the four compared against ASD in this paper) were found to require an unpleas-

antly large number of function evaluations to obtain acceptable solutions. This led the authors

to resort to manual parameter fitting until ASD was developed. It is our hope that this algo-

rithm may be able to free other researchers from similar unpleasantries.

Supporting information

S1 Appendix. THIV epidemic model structure, methods, and data.

(PDF)
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26. Prudius AA, Andradóttir S. Simulation optimization using balanced explorative and exploitative search.

In: Proceedings of the 36th Conference on Winter Simulation; 2004. p. 545–549.

27. Kelly SL, Wilson DP. GBD 2015 and HIV estimates from the Optima model. The Lancet HIV. 2016; 3

(12):e558. https://doi.org/10.1016/S2352-3018(16)30192-8 PMID: 27884372

28. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by

fast computing machines. Journal of Chemical Physics. 1953; 21(6):1087–1092. https://doi.org/10.

1063/1.1699114

29. Spall JC. Multivariate stochastic approximation using a simultaneous perturbation gradient approxima-

tion. IEEE Transactions on Automatic Control. 1992; 37(3):332–341. https://doi.org/10.1109/9.119632

30. Nelder JA, Mead R. A simplex method for function minimization. Computer Journal. 1965; 7(4):308–

313. https://doi.org/10.1093/comjnl/7.4.308

31. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Soci-

ety for Industrial & Applied Mathematics. 1963; 11(2):431–441. https://doi.org/10.1137/0111030

32. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simmulated annealing. Science. 1983; 220

(4598):671–680. https://doi.org/10.1126/science.220.4598.671 PMID: 17813860

33. Bethke AD. Genetic algorithms as function optimizers. University of Michigan; 1978.

34. Ben-Ameur W. Computing the initial temperature of simulated annealing. Computational Optimization

and Applications. 2004; 29(3):369–385. https://doi.org/10.1023/B:COAP.0000044187.23143.bd

35. Donsker MD. Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theo-

rems. The Annals of Mathematical Statistics. 1952;p. 277–281. https://doi.org/10.1214/aoms/

1177729445

36. Anderson SJ, Cherutich P, Kilonzo N, Cremin I, Fecht D, Kimanga D, et al. Maximising the effect of

combination HIV prevention through prioritisation of the people and places in greatest need: a modelling

study. The Lancet. 2014; 384(9939):249–256. https://doi.org/10.1016/S0140-6736(14)61053-9

37. Stuart R, Fraser-Hurt N, Kerr C, Mabusela E, Madi V, Mkhwanazi F, et al. Can the City of Johannesburg

end AIDS by 2030? An analysis of the impact of achieving the fast-track targets and what it will take to

get there. Journal of the International AIDS Society; in press.

38. Kelly S, Shattock A, Kerr CC, Gama T, Nhlabatsi N, Zagatti G, et al. HIV Mathematical Modelling to Sup-

port Swaziland’s Development of its HIV Investment Case. The World Bank; 2014.

39. Dura-Bernal S, Neymotin S, Kerr C, Sivagnanam S, Majumdar A, Francis J, et al. Evolutionary algorithm

optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of

Research and Development. 2017; 61(2/3):6–1. https://doi.org/10.1147/JRD.2017.2656758 PMID:

29200477
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